Brettanomyces:

Flavors and performance of single and multiple strain fermentations with respect to time.

Greg Doss
Wyeast Laboratories
AHA NHC June 20, 2008
“Brett” Descriptors

- Horse Blanket
- Barnyard
- Pie Cherry
- Sweetarts/ Smarties Candy
- Smokey
- Band-aids
- Bacon
- Spice
- Cloves
- Cheesy
- Rancid
- Mousy/ Mouse Urine
- Bready
- Dirty Socks

- Clean?????
Outline of Talk

• General Brettanomyces Information

• Wyeast Experiment

• Tasting/ Discussion
General

• Isolated by Claussen 1904 as cause of 2° fermentation of English Stock Beer

• Brettano- myces = British Brewing-Fungus

• Dekkera
 – Interchangeable name for Brettanomyces
 – Sporagenous form or sexual anamorph
 – Spore form is rare in nature <1.0%
General

• Major spoilage organism in wine.
 – Responsible for $ millions annual losses in the wine industry.
 – Most research performed on Brettanomyces in wine.

• Very little research in beer.

• Common character of Lambics and Orval

• Homebrewers Gaining Popularity
 – (Burgundian Babble Belt, Mad Fermentationist, etc.)

• US Commercial Brewers
 – Russian River, Pizza Port, Jolly Pumpkin, The Shed etc.
General

Brettanomyces/ Dekkera Species Taxonomy

• B. bruxellensis
 – B. lambicus, B. intermedius
• B. anomala
• B. custersianus
• B. naardenensis
• B. nanus

Each specie very diverse with many strains
General

- Slow growing
 - Grow to large populations from very few cells
- Fastidious
- Very adaptable
- Resilient to harsh conditions
 - Low pH
 - High alcohol
 - Low nutrient
- Resistant to Cycloheximide
Morphology

• Variable Morphologies
 – “Boat” shaped (Ogival)
 – Spherical
 – Elongated (Pseudohyphae)
Metabolism

• Can use a large number of substrates for carbon source
 – Simple Sugars
 • Glucose, Fructose, Sucrose, Trehelose, Maltose, Maltotriose
 – Dextrins
 • Maltotetrose completely
 • Maltopentose & Larger dextrins partially
 – Alcohol
 • Ethanol, glycerol
 – Cellibiose (Wood)
 • Most of the problems in wine industry
“Brett” Flavor Contribution

• Volatile Phenols
 – Medicinal (Band-Aid, plastic)
 – Farmyard (Horse blanket, Wet animal, Wet leather)
 – Spicy Clove

• Acetic Acid (Vinegar)
 – O_2 required
 – More found in barrel/carboy aging
 – Less if added at bottling

• Isovaleric Acid (Rancid, Cheesy)
 – Leucine conversion

• Tetrahydropyridines (Mouse urine [High], Bready [Low])
 – Ethanol + Lysine (O_2)

• Ethyl Lactate
 – Fruit, Coconut
Volatile Phenols

- Why do they do that?
 - Survival mechanism.
 - Way for cell to replenish coenzyme NADH pool

- Reaction is dependant on enzyme activity and substrate levels
 - Not necessarily dependant on growth
 - Population
 - Enzyme activity is dependant on fermentation conditions.
 - Manipulated by O_2, pH, Density, Temperature
 - Level of substrates - Hydrocinnamic Acids (Penolic Acids)
 - Abundant in plants including cereal grains.
 - Anti-oxidants
 - Natural antimicrobials
 - Manipulated by Grist/ Mash profile
Volatile Phenols

Phenolic Acid

P-Coumaric Acid
Ferulic Acid
Caffeic Acid

Decarboxylation

Vinyl Phenol

4-vinyl phenol
4-vinyl guiacol
Vinyl calechol

Reduction

Ethyl Phenol

4-ethyl phenol
4-ethyl guiacol
Ethyl calechol

Common

Saccharomyces
Most Wild yeast
Lactic Acid Bacteria

Unique

Brettanomyces
Pichia spp.
Candida spp.
Few Lactic Acid Bacteria
Sanitation

• Why are we scared?
 – Don’t know a lot about it.
 – Will survive in low pH, high alcohol, low nutrient environments.
 – Very recognizable flavor profile.
 – Bio-film

• Don’t be scared!
 – Brettanomyces dies like everything else.
 • Use good sanitation techniques – no problems
 • Susceptible to heat and chemicals.
 – 155°F
 • Avoid plastic fermenters
 • No cracks in gaskets
 • Take all parts of corni apart
 • Chemicals
 – Cleaner
 » Caustic
 » Glo-san/ PBW
 » Can add chlorine if concerned with biofilm.
 – Sanitizer
 » Iodophor
 » Acid Sanitizer
 » Peracetic acid
How do we use Brett in the Brewhouse?

- Commercial Examples
 - Orval @ Bottling 5000 cells/ml.
 - No priming sugar added
 - Flavor production around 3 months.
 - Lambic Breweries
 - Natural inoculation
 - Flavor production 6 months
 - Russian River
 - Number of different beers.
 - Most 2° Brett in barrel
 - Sanctification all Brett
 - Bottles at 1.010, Ends up at 1.004
 - Jolly Pumpkin
 - 1° stainless, 2° Natural Brett in barrel
 - Not a lot of density drop from Brett

- Homebrew
 - Bergundian Babble Belt Brett Exchange
 - http://madfermentationist.blogspot.com/

- Not a lot of difference between US Commercial and Homebrewers
 - Pioneers. A lot to experiment with.
How do we use Brett in the Brewhouse?

• Problems
 – Not a lot of research on beer.
 – Very complex flavor production.
 – Lengthy fermentations/conditioning
 – Many variables involved.
 – Profile changes with CO₂
Brewing Variables

Brettanomyces Strain
Saccharomyces Strain
Timing of Incoculation
Pitch Rate
Temperature
Grist
Mash
Density
pH
O₂
Wyeast Experiment

• Goal
 – Determine the affect the timing of inoculation.
 – Determine the affect of other yeast strains on Brettanomyces flavor production

• Protocol
 – Brew standard/simple wort every month for 3 months
 – Inoculate 4.5 gal. fermentations
 – Test pH, density, and sensory each week
Recipe

General
Vol. 44 gal
IBU 10

Malt
25# Briess Pilsen DME (63%)
10# Briess Wheat DME (25%)
5# Maltose (12%)

Boil
30 min 8oz. Williamette (5.5%AA)
12 min 7 g. Tan B
10 min 20 g. Whirlflock
5 min 20 g. Wyeast Nutrient

Fermentation
OG 13.0°P
O₂ 13 ppm.
Fermentation Temperature 70F
Saccaromyces Pitch Rate 6 million cells/ ml.
Brettanomyces Pitch Rate 3 million cells/ ml.
Inoculations

• #1
 – 1° Brettanomyces (5526)

• #2
 – 1° Saccharomyces (1007, 1056, 3787)
 – 2° Brettanomyces (5526)

• #3
 – Co-inoculation Saccharomyces-Brettanomyces
 – (1007-5526, 1056-5526, 3787-5526)
Fermentation Data
Brett Only

Brett Only
\(\Delta \) Density/ Time

Brett Only
\(\Delta \) pH/ Time

Time (Days)
Density (Plato)

Time (Days)
pH

A2
B1
B2
B3
B4
Fermentation Data

Brett in 2°

\[\Delta \text{Density/ Time}\]

\[\Delta \text{pH/ Time}\]
Fermentation Data
Co-Inoculation

Co-Inoculation
\(\Delta \text{Density/Time} \)

Co-Inoculation
\(\Delta \text{pH/Time} \)

Graph 1:
- Co-Inoculation
- \(\Delta \text{Density/Time} \)
- \(\text{Time (Days)} \)
- \(\text{Density (Plato)} \)
- Graph showing data points for A3, A4, B5, B6, C1, C2, C3, C4, C7 over time.

Graph 2:
- Co-Inoculation
- \(\Delta \text{pH/Time} \)
- \(\text{Time (Days)} \)
- \(\text{Density (Plato)} \)
- Graph showing data points for A3, A4, B5, B6, C1, C2, C3, C4, C7 over time.
Conclusions

• 2° inoculation preferred beer
 – Possible CO₂ inhibition with Co-inoculation

• Saccharomyces strain does make a difference.
 – Competition for metabolites
 – Production of Ethyl phenol pre-cursors

• Can produce nice Brett beer relatively quick.
 – Onset of Brett character in 3-5 weeks.

• TG stabilized as Brett flavors continued
 – TG 1.004-1.008
 – All Brett 60-80 days
 – Co-inoc & 2° inoc 30-50 days
 – May be different with different strain, grist, mash, OG.

• This is only one trial of 1 experiment!!

• Don’t be afraid to try this at home.
Tasting

- 6 samples
- Beware of “Palate Fatigue”
- Go back frequently to “Control”
- Samples changed with every tasting.
Tasting #1

• Control (A7) Saccharomyces Only
 – 1007 German Alt
 – 14 weeks
 – TG 2.8°P
 – pH 4.54

• Nose
 – Slight fruit, red apple, pear

• Flavor
 – Fairly neutral
 – Slight fruit
 – Slight yeast
 – Malty finish
Tasting #2

- Co-inoculation (C2)
 - 1056-5526
 - 6 weeks
 - TG 2.3
 - pH 4.67

- Nose
 - Slight Sweetart/Smarties
 - Med Smoke
 - Slight Band-aid
 - Med-High Horsey
 - Med Burnt Rubber

- Flavor
 - Med Smoke
 - Med Band-aid
 - Med Horsey
 - Slight Acetic
 - Full on palate
 - Bready

- Overall
 - Not preferred
Tasting #3

- Co-inoculation (C4)
 - 3787-5526
 - 6 weeks
 - TG 2.0
 - pH 4.21

- Nose
 - Med Acetic
 - Med Fruit - Juicy Fruit
 - Mild Horsy
 - Slight Burnt Rubber

- Flavor
 - Med Acetic
 - Med Horsy
 - Slightly Astringent

- Overall
 - OK
Tasting #4

• Brett in 2° (C6)
 – 3787 1°, 5526 2°
 – 6 weeks
 – TG 1.8
 – pH 4.19

• Nose
 – Med Acetic
 – Med Horsy

• Flavor
 – Med Acetic
 – Med Horsy
 – Nice “Lambic” Character
 – Med Clove

• Overall
 – Preferred
Tasting #5

• Brett only (A2)
 – 5526 1°
 – 14 weeks
 – TG 2.0
 – pH 4.20

• Nose
 – Mild Acetic
 – Mild Horsey
 – Mild Fruit - Juicy Fruit
 – Mild Stone fruit
 – Dirty Socks

• Flavor
 – Mild Acetic
 – Mild Horsey
 – Mild Fruit - Juicy Fruit
 – Mild Stone fruit
 – Dirty Socks

• Overall
 – A lot cleaner than expected
Tasting #6

- Co-inoculation (A4)
 - 1007-5526
 - 14 weeks
 - TG 2.0
 - pH 4.18

- Nose
 - Slight Acetic
 - Mild Fruit - Pear
 - Mild Bubblegum

- Flavor
 - Slight Acetic
 - Mild Fruit - Pear
 - Mild Bubblegum

- Overall
 - A lot cleaner than expected
Thanks

• Jess Caudill - Wyeast Laboratories
• Lucy Joseph – UC Davis
• Roger Musche – Belgian Fine Technologies Intl.
• Vinnie Cilurzo – Russian River Brewing
• Shaun Hill – The Shed – Norrebro Bryghus
• Michael Tonsmiere – Mad Fermentationist
• David Osborne - Wesmar Chemicals
• Ron Jefferies – Jolly Pumpkin
Questions?

Contact Info:
Greg Doss
Wyeast Laboratories
greg@wyeastlab.com

©2008 Wyeast Laboratories Inc.